An Introduction to Mathematical Cryptography

Prijzen vanaf
31,99

Beschrijving

Bol Partner An Introduction to Mathematical Cryptography This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, anddigital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included. This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, anddigital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

Vergelijk aanbieders (3)

Shop
Prijs
Verzendkosten
Totale prijs
 31,99
Gratis
 31,99
Naar shop
Gratis Shipping Costs
 52,99
Gratis
 52,99
Naar shop
Gratis Shipping Costs
 100,94
Gratis
 100,94
Naar shop
Gratis Shipping Costs
Beschrijving (3)
Bol Partner

An Introduction to Mathematical Cryptography This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, anddigital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included. This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, anddigital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

Bol

ThecreationofpublickeycryptographybyDi?eandHellmanin1976andthe subsequent invention of the RSA public key cryptosystem by Rivest, Shamir, and Adleman in 1978 are watershed events in the long history of secret c- munications. This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: * classical cryptographic constructions, such as Diffie-Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; * fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; * an in-depth treatment of important recent cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. This book is an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. ThecreationofpublickeycryptographybyDi?eandHellmanin1976andthe subsequent invention of the RSA public key cryptosystem by Rivest, Shamir, and Adleman in 1978 are watershed events in the long history of secret c- munications. It is hard to overestimate the importance of public key cr- tosystems and their associated digital signature schemes in the modern world of computers and the Internet. This book provides an introduction to the theory of public key cryptography and to the mathematical ideas underlying that theory. Public key cryptography draws on many areas of mathematics, including number theory, abstract algebra, probability, and information theory. Each of these topics is introduced and developed in su?cient detail so that this book provides a self-contained course for the beginning student. The only prerequisite is a ?rst course in linear algebra. On the other hand, students with stronger mathematical backgrounds can move directly to cryptographic applications and still have time for advanced topics such as elliptic curve pairings and lattice-reduction algorithms. Amongthemanyfacetsofmoderncryptography,thisbookchoosestoc- centrate primarily on public key cryptosystems and digital signature schemes. This allows for an in-depth development of the necessary mathematics - quired for both the construction of these schemes and an analysis of their security. The reader who masters the material in this book will not only be well prepared for further study in cryptography, but will have acquired a real understanding of the underlying mathematical principles on which modern cryptography is based.

Amazon

Pagina's: 540, Editie: Softcover reprint of hardcover 1st ed. 2008, Paperback, Springer


Productspecificaties

Merk Springer
EAN
  • 9781441926746
  • 9781493917105
  • 9781493939381
  • 9780387779935
Maat

Prijshistorie

Prijzen voor het laatst bijgewerkt op: