Deep Learning Illustrated

Prijzen vanaf
44,89

Beschrijving

Bol Deep learning is one of today’s hottest fields. This approach to machine learning is achieving breakthrough results in some of today’s highest profile applications, in organizations ranging from Google to Tesla, Facebook to Apple. Thousands of technical professionals and students want to start leveraging its power, but previous books on deep learning have often been non-intuitive, inaccessible, and dry. In Deep Learning Illustrated, three world-class instructors and practitioners present a uniquely visual, intuitive, and accessible high-level introduction to the techniques and applications of deep learning. Packed with vibrant, full-color illustrations, it abstracts away much of the complexity of building deep learning models, making the field more fun to learn and accessible to a far wider audience. Part I’s high-level overview explains what Deep Learning is, why it has become so ubiquitous, and how it relates to concepts and terminology such as Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Reinforcement Learning. These opening chapters are replete with vivid illustrations, easy-to-grasp analogies, and character-focused narratives. Building on this foundation, the authors then offer a practical reference and tutorial for applying a wide spectrum of proven deep learning techniques. Essential theory is covered with as little mathematics as possible and is illuminated with hands-on Python code. Theory is supported with practical "run-throughs" available in accompanying Jupyter notebooks, delivering a pragmatic understanding of all major deep learning approaches and their applications: machine vision, natural language processing, image generation, and videogaming. To help readers accomplish more in less time, the authors feature several of today’s most widely used and innovative deep learning libraries, including TensorFlow and its high-level API, Keras; PyTorch; and the recently released, high-level Coach, a TensorFlow API that abstracts away the complexity typically associated with building Deep Reinforcement Learning algorithms. Ideal for software developers, data scientists, and analysts at all levels of experience Teaches through simple visuals, accessible Python code examples, character-driven narratives, and intuitive analogies Covers today’s leading applications, including machine vision, natural language processing, image generation, and videogames Introduces four powerful Deep Learning libraries: TensorFlow, Keras, PyTorch, and Coach Carefully designed to minimize mathematical formulae and avoid unnecessary complexity The first full-color, illustrated, hands-on guide to the fundamentals of modern, deep-learning AI: simply the most intuitive, practical way to get started Ideal for software developers, data scientists, and analysts at all levels of experience Teaches through simple visuals, accessible Python code examples, character-driven narratives, and intuitive analogies Covers today’s leading applications, including machine vision, natural language processing, image generation, and videogames Introduces four powerful Deep Learning libraries: TensorFlow, Keras, PyTorch, and Coach Carefully designed to minimize mathematical formulae and avoid unnecessary complexity "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come."—Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep LearningDeep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.World-class instructor and practitioner Jon Krohn—with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens—presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered.You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Vergelijk aanbieders (2)

Shop
Prijs
Verzendkosten
Totale prijs
 44,89
Gratis
 44,89
Naar shop
Gratis Shipping Costs
 56,14
Gratis
 56,14
Naar shop
Gratis Shipping Costs
Beschrijving (2)
Bol

Deep learning is one of today’s hottest fields. This approach to machine learning is achieving breakthrough results in some of today’s highest profile applications, in organizations ranging from Google to Tesla, Facebook to Apple. Thousands of technical professionals and students want to start leveraging its power, but previous books on deep learning have often been non-intuitive, inaccessible, and dry. In Deep Learning Illustrated, three world-class instructors and practitioners present a uniquely visual, intuitive, and accessible high-level introduction to the techniques and applications of deep learning. Packed with vibrant, full-color illustrations, it abstracts away much of the complexity of building deep learning models, making the field more fun to learn and accessible to a far wider audience. Part I’s high-level overview explains what Deep Learning is, why it has become so ubiquitous, and how it relates to concepts and terminology such as Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Reinforcement Learning. These opening chapters are replete with vivid illustrations, easy-to-grasp analogies, and character-focused narratives. Building on this foundation, the authors then offer a practical reference and tutorial for applying a wide spectrum of proven deep learning techniques. Essential theory is covered with as little mathematics as possible and is illuminated with hands-on Python code. Theory is supported with practical "run-throughs" available in accompanying Jupyter notebooks, delivering a pragmatic understanding of all major deep learning approaches and their applications: machine vision, natural language processing, image generation, and videogaming. To help readers accomplish more in less time, the authors feature several of today’s most widely used and innovative deep learning libraries, including TensorFlow and its high-level API, Keras; PyTorch; and the recently released, high-level Coach, a TensorFlow API that abstracts away the complexity typically associated with building Deep Reinforcement Learning algorithms. Ideal for software developers, data scientists, and analysts at all levels of experience Teaches through simple visuals, accessible Python code examples, character-driven narratives, and intuitive analogies Covers today’s leading applications, including machine vision, natural language processing, image generation, and videogames Introduces four powerful Deep Learning libraries: TensorFlow, Keras, PyTorch, and Coach Carefully designed to minimize mathematical formulae and avoid unnecessary complexity The first full-color, illustrated, hands-on guide to the fundamentals of modern, deep-learning AI: simply the most intuitive, practical way to get started Ideal for software developers, data scientists, and analysts at all levels of experience Teaches through simple visuals, accessible Python code examples, character-driven narratives, and intuitive analogies Covers today’s leading applications, including machine vision, natural language processing, image generation, and videogames Introduces four powerful Deep Learning libraries: TensorFlow, Keras, PyTorch, and Coach Carefully designed to minimize mathematical formulae and avoid unnecessary complexity "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come."—Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep LearningDeep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.World-class instructor and practitioner Jon Krohn—with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens—presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered.You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Amazon

Pagina's: 416, Editie: Illustrated, Paperback, Addison Wesley


Productspecificaties

Merk ADDISON WESLEY
EAN
  • 9780135116692
Maat

Prijshistorie

Prijzen voor het laatst bijgewerkt op: