High Entropy Alloy Superconductors: Exotic Properties, Applications and Materials Design

Prijzen vanaf
149,00

Beschrijving

Bol This book offers a comprehensive survey of the latest research concerning high-entropy alloy (HEA) superconductors, an emerging topic which has attracted significant attention since their discovery in 2014. HEAs represent a novel class of materials introduced in 2004, renowned for their exceptional mechanical attributes, robust resistance to corrosion, and remarkable thermal stability, among other characteristics. Superconductivity has emerged as a particularly prominent subject in this domain. Recent important findings are robust superconductivity under extraordinarily high pressure or ion irradiation, possible unconventional superconductivity, enhancement of bulk superconductivity, and high critical current density. In this book, HEA superconductors are classified into two primary categories: The first class encompasses alloy systems characterized by body-centered cubic and hexagonal close-packed structures; and the second class comprises intermetallic types. In each of these classes, the authors expound upon the exotic properties, applications, and materials design, aligning with the overarching themes of their work. This book delivers a topical and timely discussion of superconductivity associated with the high-entropy state, the potential applications under consideration, and the intricacies of materials design. These recent discoveries are poised to captivate many researchers in materials science, particularly those engaged in high-entropy alloys and the realm of superconducting properties and technology. This book offers a comprehensive survey of the latest research concerning high-entropy alloy (HEA) superconductors, an emerging topic which has attracted significant attention since their discovery in 2014. HEAs represent a novel class of materials introduced in 2004, renowned for their exceptional mechanical attributes, robust resistance to corrosion, and remarkable thermal stability, among other characteristics. Superconductivity has emerged as a particularly prominent subject in this domain. Recent important findings are robust superconductivity under extraordinarily high pressure or ion irradiation, possible unconventional superconductivity, enhancement of bulk superconductivity, and high critical current density. In this book, HEA superconductors are classified into two primary categories: The first class encompasses alloy systems characterized by body-centered cubic and hexagonal close-packed structures; and the second class comprises intermetallic types. In each of these classes, the authors expound upon the exotic properties, applications, and materials design, aligning with the overarching themes of their work. This book delivers a topical and timely discussion of superconductivity associated with the high-entropy state, the potential applications under consideration, and the intricacies of materials design. These recent discoveries are poised to captivate many researchers in materials science, particularly those engaged in high-entropy alloys and the realm of superconducting properties and technology.

Vergelijk aanbieders (2)

Shop
Prijs
Verzendkosten
Totale prijs
 149,00
Gratis
 149,00
Naar shop
Gratis Shipping Costs
 258,66
€ 10,00
 268,66
Naar shop
€ 10,00 Shipping Costs
Beschrijving (2)
Bol

This book offers a comprehensive survey of the latest research concerning high-entropy alloy (HEA) superconductors, an emerging topic which has attracted significant attention since their discovery in 2014. HEAs represent a novel class of materials introduced in 2004, renowned for their exceptional mechanical attributes, robust resistance to corrosion, and remarkable thermal stability, among other characteristics. Superconductivity has emerged as a particularly prominent subject in this domain. Recent important findings are robust superconductivity under extraordinarily high pressure or ion irradiation, possible unconventional superconductivity, enhancement of bulk superconductivity, and high critical current density. In this book, HEA superconductors are classified into two primary categories: The first class encompasses alloy systems characterized by body-centered cubic and hexagonal close-packed structures; and the second class comprises intermetallic types. In each of these classes, the authors expound upon the exotic properties, applications, and materials design, aligning with the overarching themes of their work. This book delivers a topical and timely discussion of superconductivity associated with the high-entropy state, the potential applications under consideration, and the intricacies of materials design. These recent discoveries are poised to captivate many researchers in materials science, particularly those engaged in high-entropy alloys and the realm of superconducting properties and technology. This book offers a comprehensive survey of the latest research concerning high-entropy alloy (HEA) superconductors, an emerging topic which has attracted significant attention since their discovery in 2014. HEAs represent a novel class of materials introduced in 2004, renowned for their exceptional mechanical attributes, robust resistance to corrosion, and remarkable thermal stability, among other characteristics. Superconductivity has emerged as a particularly prominent subject in this domain. Recent important findings are robust superconductivity under extraordinarily high pressure or ion irradiation, possible unconventional superconductivity, enhancement of bulk superconductivity, and high critical current density. In this book, HEA superconductors are classified into two primary categories: The first class encompasses alloy systems characterized by body-centered cubic and hexagonal close-packed structures; and the second class comprises intermetallic types. In each of these classes, the authors expound upon the exotic properties, applications, and materials design, aligning with the overarching themes of their work. This book delivers a topical and timely discussion of superconductivity associated with the high-entropy state, the potential applications under consideration, and the intricacies of materials design. These recent discoveries are poised to captivate many researchers in materials science, particularly those engaged in high-entropy alloys and the realm of superconducting properties and technology.

Amazon

Pagina's: 266, Editie: 2024, Hardcover, Springer


Productspecificaties

Merk Springer
EAN
  • 9789819741281

Prijshistorie

Prijzen voor het laatst bijgewerkt op: