Longitudinal Data Analysis: A Practical Guide for Researchers in Aging, Health, and Social Sciences

Prijzen vanaf
54,99
Bol Logo € 56,99
 54,99
Naar shop
Amazon Logo  196,95 Naar shop
VERGELIJK ALLE AANBIEDERS (2)

Beschrijving

Bol The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research.

Vergelijk aanbieders (2)

Shop
Prijs
Verzendkosten
Totale prijs
€ 56,99
 54,99
Gratis
 54,99
Naar shop
Gratis Shipping Costs
 196,95
Gratis
 196,95
Naar shop
Gratis Shipping Costs
Beschrijving (2)
Bol

The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research.

Amazon

Pagina's: 360, Hardcover, Academic Press Inc


Productspecificaties

Merk Academic Press Inc
EAN
  • 9789811000768
  • 9780415874151
  • 9781136705465
  • 9780761955382
  • 9780465042241
Maat

Prijshistorie

Prijzen voor het laatst bijgewerkt op: