Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization: Visualization

Prijzen vanaf
73,99

Beschrijving

Bol This book describes algorithms like Locally Linear Embedding, Laplacian eigenmaps, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in case of non-linear relationships within the data. Underlying mathematical concepts, derivations, proofs, strengths and limitations of these algorithms are discussed as well. Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization. FEATURES Demonstrates how unsupervised learning approaches can be used for dimensionality reduction Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use Provides use cases, illustrative examples, and visualizations of each algorithm Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.

Vergelijk aanbieders (2)

Shop
Prijs
Verzendkosten
Totale prijs
 73,99
Gratis
 73,99
Naar shop
Gratis Shipping Costs
 76,69
Gratis
 76,69
Naar shop
Gratis Shipping Costs
Beschrijving (2)
Bol

This book describes algorithms like Locally Linear Embedding, Laplacian eigenmaps, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in case of non-linear relationships within the data. Underlying mathematical concepts, derivations, proofs, strengths and limitations of these algorithms are discussed as well. Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization. FEATURES Demonstrates how unsupervised learning approaches can be used for dimensionality reduction Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use Provides use cases, illustrative examples, and visualizations of each algorithm Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.

Amazon

Pagina's: 160, Editie: Eerste editie, Paperback, CRC Press


Productspecificaties

Merk CRC Press
EAN
  • 9781032041032
  • 9781000438451
  • 9781032041018
Maat

Prijshistorie

Prijzen voor het laatst bijgewerkt op: